質數次方: "P^Q + Q^P = R" and P/Q/R are all "Prime Number" (P,Q)=(2,3) or (3,2)

回覆文章
tassadar
Site Admin
文章: 792
註冊時間: 2018-06-16, 22:30

質數次方: "P^Q + Q^P = R" and P/Q/R are all "Prime Number" (P,Q)=(2,3) or (3,2)

文章 tassadar » 2019-05-04, 17:25

"P^Q + Q^P = R" and P/Q/R are all "Prime Number"


P^Q + Q^P = R 而 P/Q/R 都是質數


代碼: 選擇全部

------------------------------------------
Anser #1:  P=2, Q=3, R=17

e.g. 2^3 + 3^2 = 8 + 9 = 17 (True, Prime Number)



NOT Anser #2:  P=2, Q=5, R=57

e.g. 2^5 + 5^2 = 32 + 25 = 57 = 3*19 (FALSE, NOT Prime)



NOT-Anser #3:  P=2, Q=7 or Q=11  or Q=13, or Q=17

e.g. 2^7 + 7^2 = 177 = 3*59  (FALSE, not prime)

e.g. 2^11 + 11^2 = 2048 + 121 = 2169 = 3*3*441  (FALSE, not prime)

e.g. 2^13 + 13^2 = 8361 = 3*3*929  (FALSE, not prime)

e.g. 2^17 + 17^2 = 3*43787  (FALSE, not prime)

------------------------------------------

回覆文章